wave mode for a mixture of any number of components, without carrying out numerical calculations on 2
computer. The calculation sequence for the iterative method in the case of a three-component mixture with
the parameters of the above example is shown in Fig. 2. The iteration is terminated when the difference be-
tween successive iterations is less than the given accuracy of the calculation.

NOTATION

Cms concentration of m-th mixture component in gas—liquid flow; ¢y, concentration of m-th compon-
ent absorbed by the medium; wy, function describing the filling of the porous grain; gn,, function taking into
account dependence of diffusion coefficient inside porous grain; y‘}n, relative critical coefficient taking into
account mass transfer on external boundary of porous grain; v,,, relative critical coefficient taking into ac-
count mass transfer inside porous grain; o gy, relative coefficient taking into account mass transfer due to
longitudinal effective mixing; mj, ms, relative coefficients of heat transfer between gas flow and porous
grains; my, relative coefficient of heat transfer with external surface of channel composed of porous grains;
Qm, relative thermal effect of sorption (desorption).
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STEADY.STATE TEMPERATURE FIELD OF A
WALL WITH CYLINDRICAL COOLING CHANNELS

V. F. Kravchenko, A. V. Tokarenko, UDC 536,24
and E. L. Prokof'eva

The Bubnov—Galerkin method is combined with the structural method worked out by Rvachev to
solve the problem of the steady-state temperature field of a wall with cylindrical cooling chan-
nels in a two-row arrangement.

We consider a flat wall (~b = y=sbh, —~ <x, z <®), in which there are cylindrical cooling channels of
radius r, arranged as in Fig. 1a. The wall material has a constant thermal conductivity A. At the surfaces
y =+b the wall is heated by the surrounding gas which is at temperature Ty; the heat-transfer coefficient is
@j. This heat is transferred to the massive wall of the cooling liquid with temperature T,; the heat-transfer
coefficient of the surface of a channel containing liquid is «;. We are to determine the steady-state tempera-

ture field of the wall, To do this, we combine the Bubnov—Galerkin method with the structural method worked
out by Rvachev [1-3].

Making use of the symmetry of this unknown temperature field, we can reduce the problem to that of
solving the Laplace equation in region @ (Fig. 1a):

0*0 90
) =0 x = mea W

- A@:—A@:——-(

with the boundary conditions
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Fig. 1. a) Wall cross section; b) symmetnc element
of the wall.
[ 98 +GBil] = hy,
6\71 ) T,
[ i ——Bize} = —h,,
2 T,
00 —0,
6\?3 Ty
where
T T T x Yy
AR S
Bi,=-%% . g %0, o

(3)
(4)

Here Tj is some fixed temperature, 6 is a scale dimension, and ¥y (k =1, 2, 3) are the directions of the in-

ward normals to the regions 'k of piecewise-smooth contour I'.

To solve boundary-value problem (1)-(4) we construct the functions wi(x), which satisfy conditions (2):

0, (X EC*(Q), x€Q,
o, (x)>0, x€Q,
0, (x)=0, x€T,,

%0 (x) =1, xel,.

h

Under the conditions of the present probleni, the functions wk(x) are

o, =x+x2—1/4, 0y =14 x,,

> I —x
m3=_f3+g3—~1/f5+g§,f3=l—-x,,g3= 22
We also introduce the differential operator Dy, defined by {2]
D, — O, 0 4 Oy, )
‘ Ox, Ox; Ox,  Oxy
According to (9}, we have
@&1 = cos (Vg , %), Gy =cos(Vy, Xa)
axl ;I‘k x2 rk
so that we can write
DV |, = Y vecr@.
vy, iry, -

We write the solution of boundary-value problem (1)-{4) as the expansion

0 =0 + 0,@, + 0,0, + 6, Dy,
where

o, (0,0,)% . (0,05* _ oy {0,0,)?

1 = %= =

0+ (©,05) @y ,+ (0,0,) T 0, 4 ()0,)?
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and &4(x) (s =0, 1, 2, 3) are certain arbitrary functions of the class CQ). Since we have

0(wy), L=k 14+0(0), | =45 y
= {O(m) ==k Dy {0(03,3), [k, {14)
we can write, using conditions (7) and (8) for x —~ x&T,
1 [=#k,
o, —0, D,ah»{o I {15)

It follows from conditions (7), (8), (11), and (15) that the function ®(x), defined by expansion (12) satis-
fies boundary conditions (2)-(4) exactly for any choice of the functions dg(x) € C*(R),

With boundary condition (2) we now associate the functional-differential relation
D,® + Bi,® = A, +op;, P €CPE). {16)

By virtue of conditions (7) and (11), we can treat (16) as a continuation of boundary condition {2) into
region Q. Substituting expansion (12) into (16), we find

D,®, -+ ®,D;0, + ©,D,a, + ®,D,0, - 6,0,®, +0,D,@, +
+ 6D, @, + Bi, (@, + 0,0, + 0,0, + 0:Dy) = iy + 0,y : 17
Using (14), we can rewrite (17) as
D@, + Bi,®y + @, = h, + o,

{18}
¥y =10y, 04 05 @, Dy, O €C*Q).
Solving (18) for the function &;(x), we find
®, = h, — DO, — Bi;®; + oy, . (19)

Analogously, using the functional-differential relations corresponding to boundary conditions (3) and (4),
we find
®, = hy— DD, + Bi,®@, 4 0,%, , (20

Q)3 = - D3(D0 + @Yz (21)

After substituting (19)-(21) into (12), we find that ® becomes
3 .
Q= @, -+ Ooq)n -—-2 UhDh_‘Do -+ mth ’
k=1 {(22)
@, = h,o, — hy0,, 0, =1—Bi6, + Big,.
It is easy to show that the function ®(x), defined by Eq. (22) satisfies boundary conditions (2)-(4) ex-
actly if ®¢(x) €CHRQ) and Xk(x) = 0 {2, 3].
We can finally write the desired solution ®(x) by means of a structural equation of the type

0 = @, (0, 0y Hy, hy) + @ (Dy), (23)
where

1 (®,) = 0,D, —~2DCD,

The function u(x) satisfies homogeneous boundary conditions exactly [regardiess of the chome of the element
&g (x)], and the function @y(x) satisfies the corresponding inhomogeneous boundary conditions.
We write the element $¢(x) as the expansion

D, = E Cih; (%)

i=1

(24)

in terms of the functions Aj(x) of some system {Ai }{.0:1, which is complete with respect to the region £; we
find an approximate solution for boundary-value problem (1)~(4):

3 3
0, = Qo (1) + 3 COr @ =0k — P WDk, (25)

= =1
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Fig. 2. Surface illustrating the temperature
field of symmetric element of the wall.
The function ®y(x) satisfies boundary conditions (2)-(4) exactly for any choice of the constants Gj.

The unknown constants Cj are determined from the Bubnov—Galerkin system

Dok =B85 (=12 ..., 1), a; = (Ap,—Ap@y), By = (A9 ©))-

i=l
Calculations have been carried out onan M-222 computer with Ty = 3500°K, Ty = 393°K; T, = 400°K, b =
24:1073 m, a; = 5200 W/(m? - deg), 3 = 116,300 W/Am® - deg), A = 3.49 W/(m?® - deg), 6=12-10 % m, A; =
Pi(x) ®j(x ), h = 0.05, n = 14 [Pi(x), ®i(x3), (| x1|, |x2| =1) are the Chebyshev polynomials]. The calcula-
tions yield the following values for the coefficients:
¢, = 0.18482.10; ¢, = 0.42392.107% ¢; = 0.25334.10%
¢y = —0.14172.107%; ¢, = —0.50125.10"%; ¢, = 0.22011-1071°;
¢ = Q.17009- 107%; ¢g = —0,12952.107; ¢y = —0,78927.107%
¢, = 0.54548.10°1%; ¢, = 0.89502-10%; ¢;, = —0.16802-1071%;
, £,3 = 0.11798-107% ¢,, = 0.15103- 10721,
The calculation time required on the M-222 was 25 min.
The coefficients & were calculated for region Cj(Fig,1a). Thevanishing of the coefficients with evenin-

dices (the "computer zeros™) is attributed to the symmetry of the desired temperature field with respect to
the axis 0xy.

The approximate solution of boundary-value problem (1)-(4) can thus be written

6, =@+ 2 Ci; (26)

=1
The approximate analytic solution of boundary-problem (1)—(4) was compared with the solution obtained
by the electrical-analog method. The results agree satisfactorily, except near angular points which are insta-
bility zones of the calculation process.

Figure 2 shows a surface illustrating the steady-state temperature distribution in region Q.
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